Regulation of excitability and plasticity by endocannabinoids and PKA in developing hippocampus.

نویسندگان

  • Hiroki Yasuda
  • Yan Huang
  • Tadaharu Tsumoto
چکیده

The activity-dependent strengthening and weakening of synaptic transmission are hypothesized to be the basis of not only memory and learning but also the refinement of neural circuits during development. Here we report that, in the developing CA1 area of the hippocampus, endocannabinoid (eCB)-mediated heterosynaptic long-term depression (LTD) of glutamatergic excitatory synaptic transmission is associated with PKA-mediated homosynaptic long-term potentiation (LTP). This form of LTD was dominant at postnatal days 2-10 (P2-P10), attenuated during development, and finally disappeared in the mature hippocampus. Heterosynaptic LTD of excitatory postsynaptic currents in the developing hippocampus was expressed presynaptically, spread to neighboring neurons, and was mediated by eCBs. Heterosynaptic LTD of field excitatory postsynaptic potentials was associated with a decrease in fiber volley amplitude with a similar time course. Depression of fiber volleys was blocked by K(+) channel blockers, suggesting the involvement of the decrease in presynaptic excitability in heterosynaptic LTD. In the P2-P5 hippocampus, eCBs also attenuate LTP and fiber volleys in homosynaptic pathways and help to prevent too much excitability in the neonatal hippocampus where the GABAergic system is poorly developed and even excitatory. In the hippocampus older than P6 (P > 6), however, LTP is protected from eCB-mediated depression by PKA activated at presynaptic sites by high-frequency stimulation, serving to highlight PKA-mediated LTP by weakening inactive synapses even in adjacent cells. Thus, eCBs and PKA make synapses plastic without changing excitability homeostasis in the developing hippocampus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

The Protective Effects of Crocin on Input-Output Functions and Long-term Potentiation of Hippocampal CA1 Area in Rats Exposed to Chronic Social Isolated Stress

Introduction: The lack of social communication is associated with the primary risk of proper brain functions. It is reported that crocin helps relieve this problem. The present study examined the protective effect of two doses of crocin on Long-term potentiation (LTP) of hippocampal cornu ammonis 1 (CA1) area as a cellular mechanism in rats exposed to chronic social isolated stress. Methods: R...

متن کامل

Endocannabinoid-Mediated Long-Term Plasticity Requires cAMP/PKA Signaling and RIM1α

Endocannabinoids (eCBs) have emerged as key activity-dependent signals that, by activating presynaptic cannabinoid receptors (i.e., CB1) coupled to G(i/o) protein, can mediate short-term and long-term synaptic depression (LTD). While the presynaptic mechanisms underlying eCB-dependent short-term depression have been identified, the molecular events linking CB1 receptors to LTD are unknown. Here...

متن کامل

نقش مهار منتشر شونده قشری بر القای تشنج در هیپوکمپ موش صحرایی نر

    Background & Aims : Spreading depression is a pathophysiological phenomenon that is initiated by a self-propagating depolarization wave with a short-term excitability and is followed immediately by an inhibitory phase and then continues with a long-term secondary excitability. Spreading depression has a critical role in many disorders such as migraine and seizures . The purpose of this stud...

متن کامل

Essential role for synaptopodin in dendritic spine plasticity of the developing hippocampus.

Dendritic spines are a major substrate of brain plasticity. Although many studies have focused on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-mediated regulation of spine dynamics and synaptic function in adult brain, much less is know about protein kinase A (PKA)-dependent regulation of spine shape dynamics during postnatal brain development. Synaptopodin is a dendritic spine associ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 8  شماره 

صفحات  -

تاریخ انتشار 2008